

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :	

(客戶): 志盛翔

DATE: (日期): 2019-01-12

CATEGORY (品名)	:	ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	:	SK 16V1000μF(φ8x16)
VERSION (版本)	:	01
Customer P/N	:	
SUPPLIER	:	

SUPPL	IER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
孟庆庆	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SPECIFICATION SK SERIES						ALTERN	ATION HIS ECORDS	STORY	
Rev.	Date	SK SE Mark		ige	Contents		Purpose Drafter Appro		
	Version		01				Page	 1	

	MAN YUE ELECTR COMPANY LIMI		8	ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES							SAN	ЛХС	ON	
Table 1 Product Dimensions and Characteristics														
Safety vent for $\geq \Phi 6.3$ $\downarrow \downarrow \downarrow \downarrow + amax$ $\downarrow 15 min$ $\downarrow d \pm 0.05$ $\downarrow \downarrow \downarrow + amax$ $\downarrow 15 min$ $\downarrow d \pm min$ $\downarrow \downarrow \downarrow \downarrow \downarrow H max$ $\downarrow I = 100$														
Table N o.	(VOC) - Van folerance Frangel C Clzunz, Current 105 C Litetime Sleeve													
1	ESK108M1CF16RR**P-R	16	1000	-20%~+20%) -40~105	20℃) 0.16	(μA,2min) 160	100KHz (mA rms) 1600	(Ω max) 0.059	(Hrs) 10000	D×L 8X16	F 3.5	фd 0.5	PET
	1 ESK108M1CF10KK**P-K 10 1000 -20%~+20% -40~103 0.10 100 1000 0.039 10000 8X10 5.5 0.5 FET													

Version	01	Page	2

C O N T E N T S	Sheet
Application	4
Part Number System	4
Construction	5
Characteristics	5~10
1 Rated voltage & Surge voltage	5.010
2 Capacitance (Tolerance)	
3 Leakage current	
$4 \tan \delta$	
5 Terminal strength	
.6 Temperature characteristic	
7 Load life test	
.8 Shelf life test	
.9 Surge test	
.10 Vibration	
.11 Solderability test	
.12 Resistance to solder heat	
.13 Change of temperature	
.14 Damp heat test .15 Vent test	
16 Maximum permissible (ripple current)	
List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15
	12 10

Version	01	Page	3

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

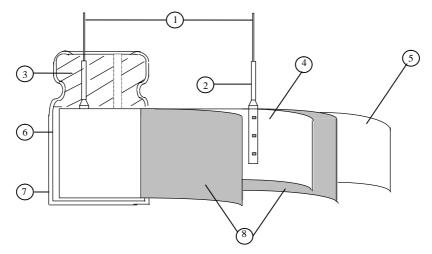
SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 5 D11 S 0 м 1 н TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Voltage (W.V.) Code Code Case Size Feature Code SAMXON Product Li ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co 3 B 5 1 4 C 5 D 3 E RR For internal use only Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 12.5 J 13 J 13.5 V 14 4 14.5 A 16 K 16.5 7 18 L 18.5 8 20 M 22 N ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EG м ±20 20 1D 105 3.5mm Pitch тν Sleeve Material C 1 FG 46 46.5 18 18.5 20 22 ? 25 EGK EGE EGD 1E PET Р 11 5.0mm Pitch тс 30 2.2 225 Ν ±30 32 13 ERS ERF ERL ERR Lead Cut & Form 35 3.3 335 1V -40 w 40 1G СВ-Туре СВ 4.7 475 42 1M -20 0 А FR 50 1H ERE ERD ERH EBD СЕ-Туре CE 10 106 57 1L -20 +10 С 63 1J HE-Type HE 22 226 71 **1**S ER. 75 1**T** 6 ERE ERC EFA ENP -20 +40 × KD-Type ĸD 336 33 80 1K 85 1R 90 100 -20 +50 FD-Type FD s Z Costing Ex 454 05 7 77 11 11 11 12 12 12 12 12 12 12 12 12 13 13 13 13.5 1C 20 20.5 7 30.7 75 47 476 90 19 ENH 100 2A -10 0 ЕН-Туре EΗ в 100 107 120 20 125 2B PCB Termial -10 +20 220 227 v 150 2Z 160 2C sw 330 337 -10 +30 Q 180 2P 200 2D Snap-in SX EKP EEP 470 477 -10 +50 22 т 215 220 2N 1C 20 25 2J 30 3A 35 3E sz ESE 2200 228 -5 +10 230 23 Е EVP EGP EWR EWU 250 2E Lug SG 22000 229 -5 +15 275 2Т F 05 300 21 33000 339 310 2R -5 +20 3 G 06 315 2F 50 80 1L 1K 1M 1P EWS EWH EWL EWB VSS 47000 479 330 2U 0 +20 R Т5 2V 350 100000 10T Screw 360 2X 0 +30 0 т6 VNS 375 2Q 150000 15T 40 50 55 10 1R 1E 1S 1F 1T 1U 0 +50 385 2Y I. D5 400 2G 220000 22T +5 +15 2M z 420 D6 VZS 450 2W 330000 ззт +5 D 500 2H 1000000 550 25 10M +10 +50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version


01

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

	ITEM	PERFORMANCE								
	Rated voltage									
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100
4.1		SV (V.DC)	8	13	20	32	44	63	79	125
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T</condition>	requency oltage	: N	0 Hz \pm 12 ot more ($)\pm$ 2°C		7rms			
		< Criteria > Shall be with	in the sp	ecified c	apacitanc	e toleran	ce.			
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capao then, me		-		istor (1	$k \Omega \pm 10$)Ω) in s	eries for 2
4.4	tan δ	<condition> See 4.2, Nor <criteria> Refer to Tabl</criteria></condition>	m Capac	itance, fo	or measur	ring frequ	iency, vo	ltage and	d tempera	ature.
		Condition: Tensile Str Fixed the or seconds. Bending Str Fixed the ca 90° within 2 seconds.	ength of capacitor rength of apacitor,	, applied Termina applied f	force to als. Force to b then ber	ent the te at it for 9	rminal (1 0° to its	~4 mm original	from the position	rubber) fo
4.5	Terminal	Diamet	er of lea	d wire		ile force (kgf)	N	-	g force N gf)	
	strength		nm and l			5 (0.51)			0.25)	
		Over 0.	5mm to	0.8mm	1	0 (1.0)		5 (0	.51)	
		< Criteri No notic		anges sh	all be fou	ınd, no b	reakage	or looser	ness at the	e terminal

Version

01

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		<condition< td=""><td></td><td>T (%</td><td>1</td><td></td><td>T:</td><td></td><td></td></condition<>		T (%	1		T:		
				Temperature(°C	-	T '	Tin		
			1	20±2		Time to r		-	
				$0(-25) \pm 3$		Time to r		-	
			3	20 ± 2		Time to r		-	
			4	105 ± 2	,	Time to r	each ther	mal equil	ibrium
			5	20 ± 2	r	Time to r	each ther	mal equil	ibrium
		<criteria< td=""><td>1></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>	1>						
		a. tan δ	shall be within	the limit of Iter	n 4.4'	The leaka	ige currer	nt measur	ed shall not
	Temperature		n 8 times of its	-					
	characteristi		p 5, tan δ shall		mit c	of Item 4.	4The leal	kage curr	ent shall not
4.6	cs		n the specified v						
1.0	05	c. At-40° table.	°C (-25°C), imp	edance (z) ratio	shal	l not exce	eed the va	lue of the	e following
			Working Vo	ltage (V) 6	.3	10	16	25	
			Z-25°C/Z	+20°C	2	2	2	2	
		For capac	itance value > 2						5/Z+20℃, ℃/Z+20℃.
		Capacitand	ce, tan δ , and in		-				
		1							
4.7	Load	$105^{\circ}C \pm 100^{\circ}C$ and $100^{\circ}C$ and $100^{\circ}C$	on> g to IEC60384- 2 with DC bias ipple peak vol nould be tested	voltage plus the tage shall not	rated	d ripple co	urrent for	Table 1	. (The sum of
	life	<criteria< td=""><td></td><td>lowing table:</td><td>ecove</td><td></td><td></td><td></td><td></td></criteria<>		lowing table:	ecove				
		<criteria< td=""><td>a> acteristic shall r</td><td>llowing table:</td><td>ecove</td><td>equiremer</td><td>nts.</td><td></td><td></td></criteria<>	a> acteristic shall r	llowing table:	ecove	equiremer	nts.		
	life	<criteria The chara Lea</criteria 	a> acteristic shall r akage current	llowing table: neet the follow Value i	ing rent	equiremer shall be s	nts. satisfied	pheric co	
	life	<criteria The chara Lea</criteria 	a> acteristic shall r	llowing table: neet the follow Value i	ing rent	equiremer	nts. satisfied	pheric co	
	life	<criteria The chara Lea</criteria 	a> acteristic shall r akage current pacitance Chan	llowing table: neet the follow Value i ge Within	$\frac{1}{100}$ ing respectively $\frac{1}{100}$ ing	equiremer shall be s	nts. satisfied ial value.	pheric co	nditions. The
	life	<criteria The chara Lea Ca tan</criteria 	a> acteristic shall r akage current pacitance Chan	llowing table: neet the follow Value i ge Within Not mo	$\frac{\log re}{14.3}$ $\frac{1}{25}$ re that	equiremer shall be s % of init	nts. satisfied ial value. of the spe	pheric co	nditions. The
	life	<criteria The chara Lea Ca tan Ap</criteria 	a> acteristic shall r akage current pacitance Chan δ pearance	llowing table: neet the follow Value i ge Within Not mo	$\frac{\log re}{14.3}$ $\frac{1}{25}$ re that	equirements shall be stall be stall be stall be stall be stated and 200% of the stated	nts. satisfied ial value. of the spe	pheric co	nditions. The
4.8	life	<criteria The chara Ca tan Ap <conditi The capaci 1000+48/ chamber a shall be c</conditi </criteria 	a> acteristic shall r akage current pacitance Chan δ pearance tors are then sto 0 hours. Follow and be allowed connected to a or 30min. After	llowing table: neet the follow Value i ge Within Not mo There s ored with no vo ring this period to stabilized a series limiting	ecove $\frac{\log re}{1}$ $\frac{\pm 25}{re}$ $\frac{1}{25}$ $\frac{1}$	equirements shall be s $\frac{1}{8}$ of init an 200% be no leak applied a capacitors m tempertor($1k \pm 1$	hts. satisfied ial value. of the spectrum tage of electrum tate tempe shall be rature for 00Ω) with	pheric co ecified va ectrolyte. rature of removed 4~8 hou ith D.C.	nditions. The lue. $105\pm2^{\circ}C$ for from the test rs. Next they rated voltage

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

[<criteria></criteria>					
		Criteria > The characteristic shall meet the following requirements.					
		Leakage current Value in 4.3 shall be satisfied					
She	Shelf	Capacitance ChangeWithin $\pm 25\%$ of initial value.					
4.8	life						
	test	The second se					
		Appearance There shall be no leakage of electrolyte.					
		Remark: If the capacitors are stored more than 1 year, the leakage current may increase. Please apply voltage through about 1 k Ω resistor, if necessary.					
		Condition> Applied a surger voltage to the consolitor connected with a $(100 \pm 50)/C$ (kO) resistor.					
		Applied a surge voltage to the capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor. The capacitor shall be submitted to 1000 cycles, each consisting of charge of $30 \pm 5s$,					
		followed discharge of 5 min 30s.					
		The test temperature shall be $15 \sim 35^{\circ}$ C.					
		C_{R} : Nominal Capacitance (μ F)					
	G	<criteria></criteria>					
4.9	Surge	Leakage current Not more than the specified value.					
	test	Capacitance Change Within $\pm 15\%$ of initial value.					
		$\tan \delta$ Not more than the specified value.					
		Appearance There shall be no leakage of electrolyte.					
		Attention:					
		This test simulates over voltage at abnormal situation only. It is not applicable to such					
		over voltage as often applied.					
4.10	Vibration test	The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : $10Hz \sim 55Hz$ Peak to peak amplitude : $1.5mm$ Sweep rate : $10Hz \sim 55Hz \sim 10Hz$ in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. 4mm or less 4mm or less 4mm or less To be soldered Criteria> After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.					
		AppearanceNo mechanical damage in terminal. No leakage of electrolyte or swelling of the case.					
		Appearanceof electrolyte or swelling of the case.The markings shall be legible.					
		The markings shall be legible.					

Version	01		Page	8
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

	I I	<i>a</i> 114							
		<condition></condition>		. f. 11					
		The capacitor shall be tes		-	conditions	s:			
		Soldering temperature Dipping depth		: 245±3°C : 2mm					
	Solderability			: 25±2.5mm/	' a				
4.11	test	Dipping speed		23 ± 2.5	S				
		Dipping time <criteria></criteria>		. 5±0.58					
				A minimum	of 95% (of the surface b	eino		
		Coating quality		immersed	01 20 70 0		emg		
		<condition></condition>							
		Terminals of the capacito	r shall be in	mersed into	solder h	both at 260 ± 5	°Cfor10+		
		1 seconds or $400 \pm 10^{\circ}$ C for							
			•						
	Desistantes to	Then the capacitor shall the for 1~2 hours before mea		the normal te	emperatu	re and normal	number		
4.12	Resistance to solder heat	<criteria></criteria>	surement.						
7.12	test	Leakage current	Not	more than th	e specifi	ed value.			
		Capacitance Change		hin $\pm 10\%$ of	•				
		$\tan \delta$		more than th	e specifi	ed value.			
		Appearance			-	of electrolyte.			
		<condition></condition>	rding to IEC	60281 1No 1	1 7matha	de appagitor d	all ba		
		Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:							
		Temperature Time				ime			
		(1)+20℃			 ≤3	Minutes			
		(2)Rated low temper	ature (-40°C)(-25℃)	30 ± 2	Minutes			
4.10	Change of	(3)Rated high temper			$\frac{30\pm2}{30\pm2}$	Minutes			
4.13	temperature test	(1) to $(3)=1$ cycle, to		C)	30±2	Willutes			
	test	< <u>Criteria></u>	tai 5 cycle						
		The characteristic shall m	neet the follo	wing require	ment				
		Leakage current		re than the sp		value			
		$\tan \delta$		re than the sp					
		Appearance		hall be no lea					
		<condition></condition>							
		Humidity Test:							
		According to IEC60384-	4No.4.12 me	thods, capac	itor shall	be exposed for	1500 ± 8		
		_		-		-			
		hours in an atmosphere of 90~95% R H .at $40\pm 2^{\circ}$ C, the characteristic change shall meet the following requirement.							
		< <u>Criteria></u>							
4.1.4	Damp heat	Leakage current	Not more t	more than the specified value.					
4.14	test	Capacitance Change Within $\pm 20\%$ of initial val							
		tan δ		than 120% of					
		Appearance	There shall	l be no leaka	ge of ele	ctrolyte.			
L									

Version

01

Page 9

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

4.16	4.15	Vent test	22.4 or less	ith its pola	rity reversed	-		
4.16 Maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exact voltage and shall not reverse voltage. Frequency Multipliers: Coefficient Freq. (Hz) 120 1k 10k 100k Maximum permissible (ripple current) $33\sim270$ 0.50 0.73 0.92 1.00 $330\sim680$ 0.55 0.77 0.94 1.00 $820\sim1800$ 0.60 0.80 0.96 1.00			The vent shall operate with no		conditions	such as fla	ames or dis	persion of
	4.16	permissible (ripple	The maximum permissible r at 120Hz and can be applied Table-1 The combined value of D.C rated voltage and shall not r Frequency Multipliers: Coefficient (Hz) Cap. (µF) 33~270 330~680 820~1800	voltage an reverse volt 120 0.50 0.55 0.60	um operatin d the peak <i>A</i> age. 1k 0.73 0.77 0.80	g temperatu A.C voltage 10k 0.92 0.94 0.96	ure e shall not o 100k 1.00 1.00 1.00	exceed the

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
Heavy metals	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	oounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo com	apounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

01

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20 °C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01	Page	12

SAMXON

(6) Wiring Near the Pressure Relief Vent

- Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100° C may be released which could dissolve the wire insulation and ignite.
- (7) Circuit Board patterns Under the Capacitor
- Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.

(8) Screw Terminal Capacitor Mounting

Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
- 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

(1) Provide protection circuits and protection devices to allow safe failure modes.

(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2.Capacitor Handling Techniques

2.1 Considerations Before Using

- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

- 2.3 Manual Soldering
- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes . If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version 0)1	Page	14
-----------	----	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01	Page	15